universität freiburg

Numerical Optimal Control for Nonsmooth Dynamic Systems

Moritz Diehl¹ joint work with Armin Nurkanovic¹, Anton Pozharskiy¹, Christian Dietz^{1,2}, Sebastian Albrecht²

¹ Department of Microsystems Engineering and Department of Mathematics, University of Freiburg, Germany

² Siemens Foundational Technology, Munich, Germany

Workshop on Optimization for Learning and Control, IMT School for Advanced Studies Lucca, June 4-6 2025

Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Can in most applications assume convexity of all "outer" problem functions: L_c, E, h, r .

Continuous-Time OCP

 $\min_{\substack{x(\cdot),u(\cdot)}} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$ s.t. $x(0) = \bar{x}_0$ $\dot{x}(t) = f(x(t), u(t))$ $0 \ge h(x(t), u(t)), \ t \in [0, T]$ $0 \ge r(x(T))$

Three levels of difficulty:

Continuous-Time OCP

 $\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$ s.t. $x(0) = \bar{x}_0$ $\dot{x}(t) = f(x(t), u(t))$ $0 \ge h(x(t), u(t)), t \in [0, T]$ $0 \ge r(x(T))$ Three levels of difficulty: (a) Linear ODE: f(x, u) = Ax + Bu

Continuous-Time OCP

 $\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$ s.t. $x(0) = \bar{x}_0$ $\dot{x}(t) = f(x(t), u(t))$ $0 \ge h(x(t), u(t)), t \in [0, T]$ $0 \ge r(x(T))$ Three levels of difficulty:

- (a) Linear ODE: f(x, u) = Ax + Bu
- (b) Nonlinear smooth ODE: $f \in C^1$

Continuous-Time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Three levels of difficulty:

- (a) Linear ODE: f(x, u) = Ax + Bu
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$
- (c) Nonsmooth Dynamics (NSD):
 - ► f not differentiable (NSD1),
 - f not continuous (NSD2), or even
 - f not finite valued, discontinuous state
 x(t) (NSD3)

Continuous-Time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Three levels of difficulty:

- (a) Linear ODE: f(x, u) = Ax + Bu
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$
- (c) Nonsmooth Dynamics (NSD):
 - ► f not differentiable (NSD1),
 - f not continuous (NSD2), or even
 - f not finite valued, discontinuous state x(t) (NSD3)

First focus on smooth cases (a) and (b).

Continuous-Time OCP

 $\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$ s.t. $x(0) = \bar{x}_0$ $\dot{x}(t) = f(x(t), u(t))$ $0 \ge h(x(t), u(t)), t \in [0, T]$ $0 \ge r(x(T))$ Three levels of difficulty:

- (a) Linear ODE: f(x, u) = Ax + Bu
- (b) Nonlinear smooth ODE: $f \in C^1$

First focus on smooth cases (a) and (b).

Recall: Runge-Kutta Discretization for Smooth Systems

$$\dot{x}(t) = \underbrace{f(x(t), u(t))}_{=:v(t)}$$

Initial Value Problem (IVP)

$$\begin{aligned} x(0) &= \bar{x}_0 \\ v(t) &= f(x(t), u(t)) \\ \dot{x}(t) &= v(t) \\ t \in [0, T] \end{aligned}$$

Discretization: N Runge-Kutta steps of each n_s stages

$$x_{0,0} = \bar{x}_{0}, \qquad \Delta t = \frac{T}{N}$$

$$v_{k,j} = f(x_{k,j}, u_{k})$$

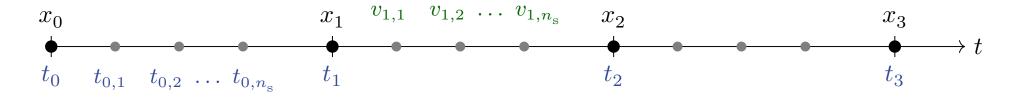
$$x_{k,j} = x_{k,0} + \Delta t \sum_{n=1}^{n_{s}} a_{jn} v_{k,n}$$

$$x_{k+1,0} = x_{k,0} + \Delta t \sum_{n=1}^{n_{s}} b_{n} v_{k,n}$$

$$j = 1, \dots, n_{s}, \quad k = 0, \dots, N - 1$$

For fixed controls and initial value: square system with $n_x + N(2n_s + 1)n_x$ unknowns, implicitly defined via $n_x + N(2n_s + 1)n_x$ equations.

(trivial eliminations in case of explicit RK methods)



Continuous time OCP

$$\min_{\substack{x(\cdot),u(\cdot)}} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Direct methods "first discretize, then optimize"

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Direct methods "first discretize, then optimize" 1. Parameterize controls, e.g. $u(t) = u_n, t \in [t_n, t_{n+1}].$

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Direct methods "first discretize, then optimize"

- 1. Parameterize controls, e.g. $u(t) = u_n, t \in [t_n, t_{n+1}].$
- 2. Discretize cost and dynamics

$$L_{\mathrm{d}}(x_n,z_k,u_n)\approx \int_{t_n}^{t_{n+1}}L_{\mathrm{c}}(x(t),u(t))\,\mathrm{d}t$$

Replace
$$\dot{x} = f(x, u)$$
 by
 $x_{n+1} = \phi_f(x_n, z_n, u_n)$
 $0 = \phi_{int}(x_n, z_n, u_n)$

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Direct methods "first discretize, then optimize"

- 1. Parameterize controls, e.g. $u(t) = u_n, t \in [t_n, t_{n+1}].$
- 2. Discretize cost and dynamics

$$L_{\mathrm{d}}(x_n,z_k,u_n)\approx \int_{t_n}^{t_{n+1}}L_{\mathrm{c}}(x(t),u(t))\,\mathrm{d}t$$

Replace
$$\dot{x} = f(x, u)$$
 by
 $x_{n+1} = \phi_f(x_n, z_n, u_n)$
 $0 = \phi_{int}(x_n, z_n, u_n)$

3. Also discretize path constraints $0 \ge \phi_h(x_n, z_n, u_n), \ n = 0, \dots N - 1.$

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Direct methods "first discretize, then optimize"

Discrete time OCP (an NLP)

$$\min_{\mathbf{x},\mathbf{z},\mathbf{u}} \sum_{k=0}^{N-1} L_d(x_k, z_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{n+1} = \phi_f(x_n, z_n, u_n)$
 $0 = \phi_{int}(x_n, z_n, u_n)$
 $0 \ge \phi_h(x_n, z_n, u_n), n = 0, \dots, N-1$
 $0 \ge r(x_N)$

Variables $\mathbf{x} = (x_0, \dots, x_N)$, $\mathbf{z} = (z_0, \dots, z_N)$ and $\mathbf{u} = (u_0, \dots, u_{N-1})$. Here, \mathbf{z} are the intermediate variables of the integrator (e.g. Runge-Kutta)

Simplest Direct Transcription: Single Step Explicit Euler

1

(not recommended in practice, other Runge-Kutta methods are much more efficient)

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize

Single Step Explicit Euler NLP, with $\Delta t = \frac{T}{N}$

$$\min_{\mathbf{x},\mathbf{u}} \sum_{k=0}^{N-1} L_{c}(x_{k}, u_{k}) \Delta t + E(x_{N})$$

s.t. $x_{0} = \bar{x}_{0}$
 $x_{n+1} = x_{n} + f(x_{n}, u_{n}) \Delta t$
 $0 \ge h(x_{n}, u_{n}), n = 0, \dots, N-1$
 $0 \ge r(x_{N})$

Variables $\mathbf{x} = (x_0, \dots, x_N)$ and $\mathbf{u} = (u_0, \dots, u_{N-1})$. (single step explicit Euler has no internal integrator variables \mathbf{z})

Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP)

$$\min_{\mathbf{x},\mathbf{z},\mathbf{u}} \sum_{k=0}^{N-1} L_{d}(x_{k}, z_{n}, u_{k}) + E(x_{N})$$

s.t. $x_{0} = \bar{x}_{0}$
 $x_{n+1} = \phi_{f}(x_{n}, z_{n}, u_{n})$
 $0 = \phi_{int}(x_{n}, z_{n}, u_{n})$
 $0 \ge \phi_{h}(x_{n}, z_{n}, u_{n}), n = 0, \dots, N-$
 $0 \ge r(x_{N})$

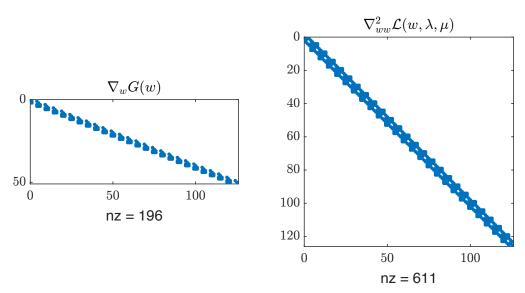
Nonlinear Program (NLP)

 $\min_{w \in \mathbb{R}^{n_x}} F(w)$ s.t. G(w) = 0 $H(w) \ge 0$

Large and sparse NLP

Variables $w = (\mathbf{x}, \mathbf{z}, \mathbf{u})$

Sparse NLP resulting from direct transcription



Variables $w = (\mathbf{x}, \mathbf{z}, \mathbf{u})$

Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^{n_x}} F(w)$$

s.t. $G(w) = 0$
 $H(w) \ge 0$

Large and sparse NLP

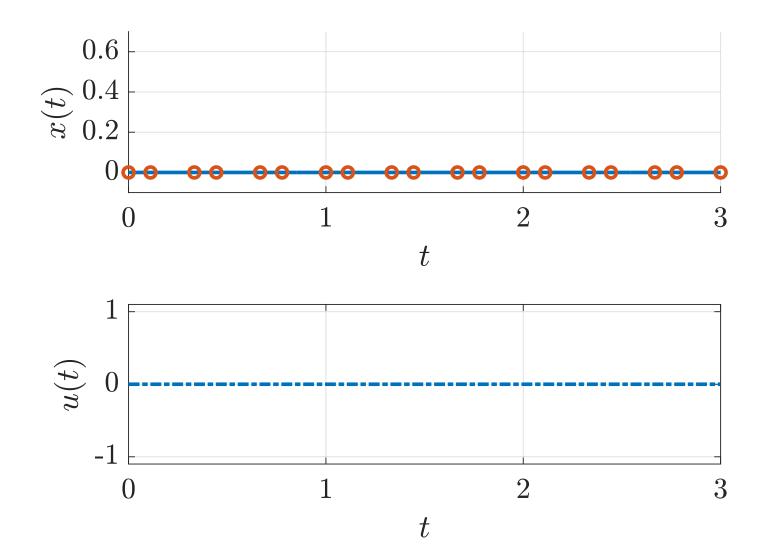
Illustrative example of direct collocation with Newton-type optimization

Illustrative nonlinear optimal control problem (with one state and one control)

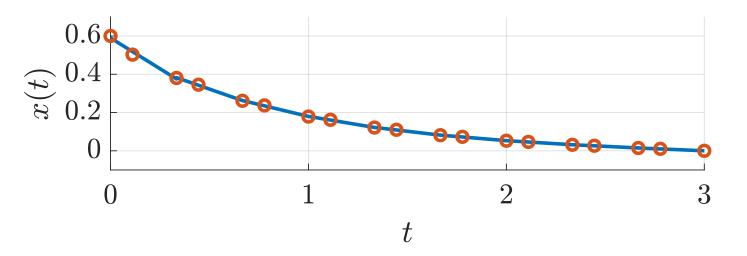
$$\begin{array}{ll} \underset{x(\cdot),u(\cdot)}{\text{minimize}} & \int_{0}^{3} x(t)^{2} + u(t)^{2} \ dt \\ \text{subject to} \\ x(0) = \bar{x}_{0} & \text{(initial value, } \bar{x}_{0} = 0.6) \\ \dot{x} = (1+x)x + u, & \text{(ODE model)} \\ -1 \le u(t) \le 1, & t \in [0,3] & \text{(bounds)} \\ x(3) = 0 & \text{(terminal constraint)} \end{array}$$

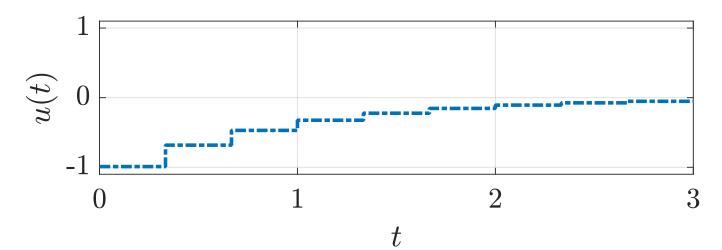
- choose N = 9 equal intervals and Radau-IIA collocation with $n_s = 2$ stages
- ▶ obtain nonlinear program with $n_x + (2n_s + 1)Nn_x + Nn_u$ variables
- initialize with zeros everywhere, solve with CasADi and Ipopt (interior point)

Illustrative example: Initialization

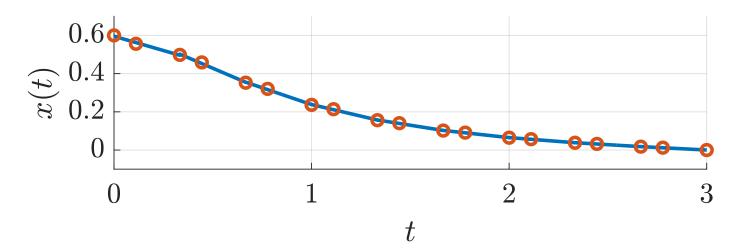


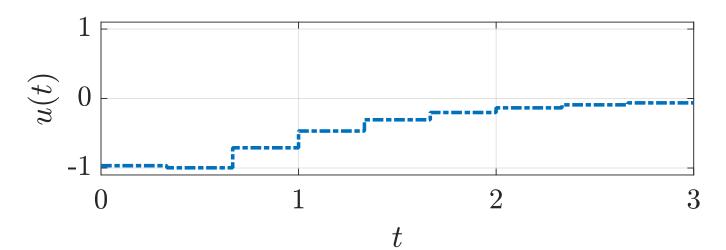
Illustrative example: First Iterate



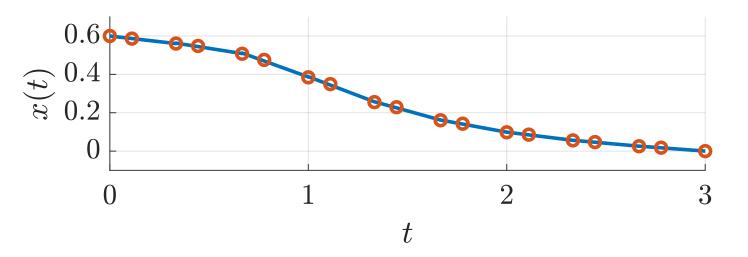


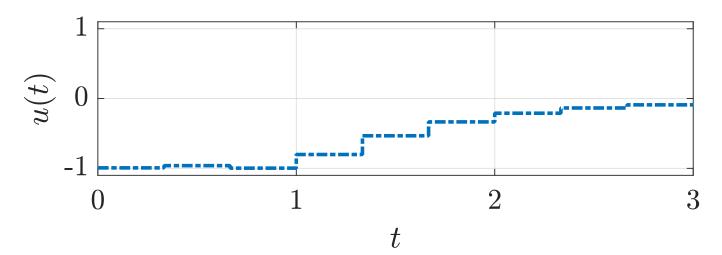
Illustrative example: Second Iterate



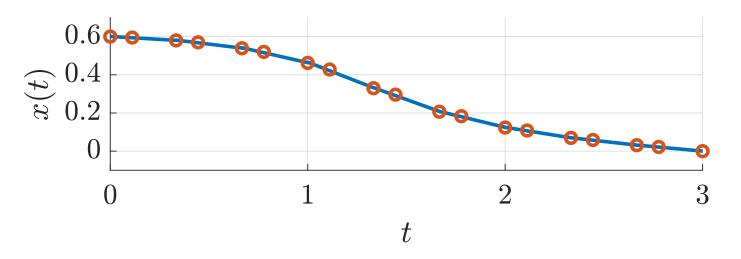


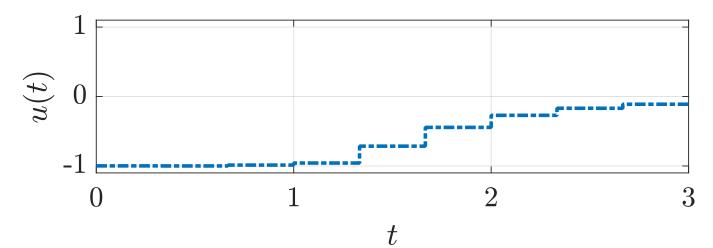
Illustrative example: Third Iterate



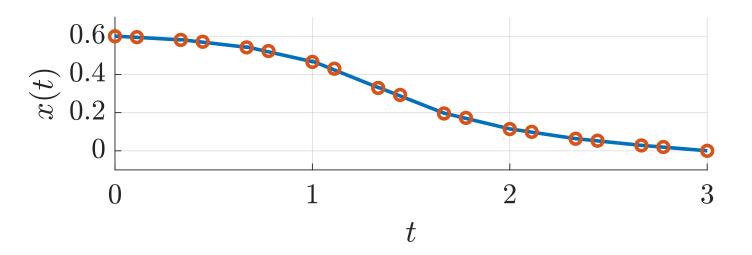


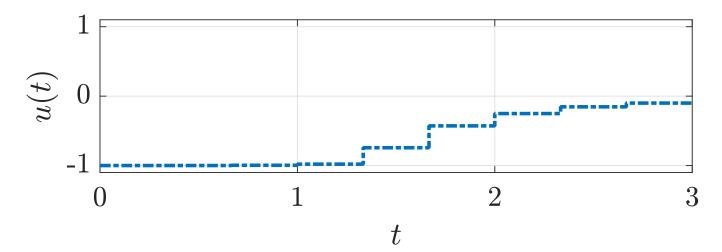
Illustrative example: Fourth Iterate



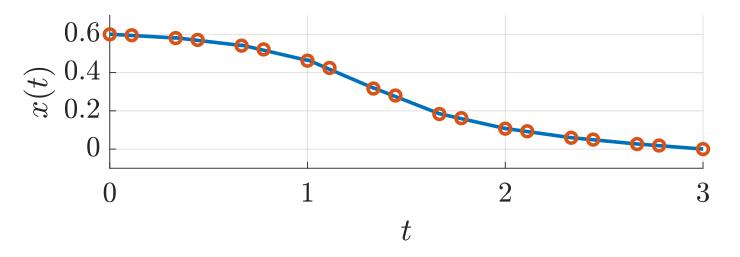


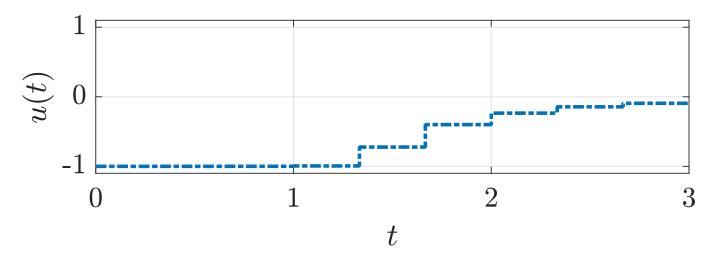
Illustrative example: Fifth Iterate



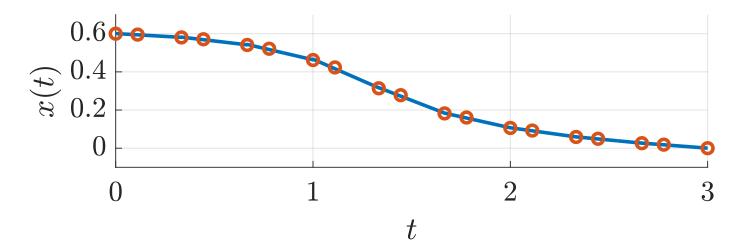


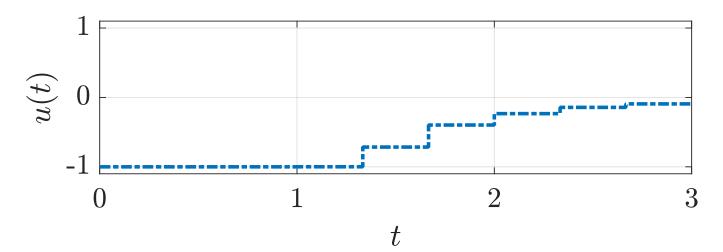
Illustrative example: Sixth Iterate



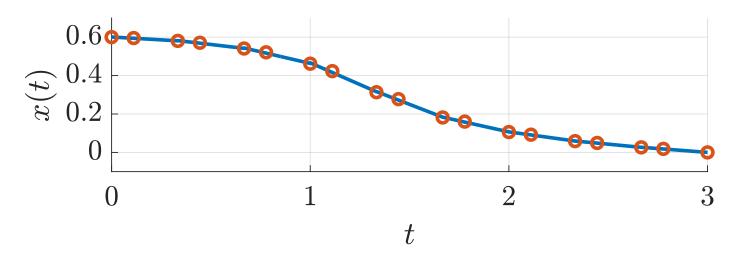


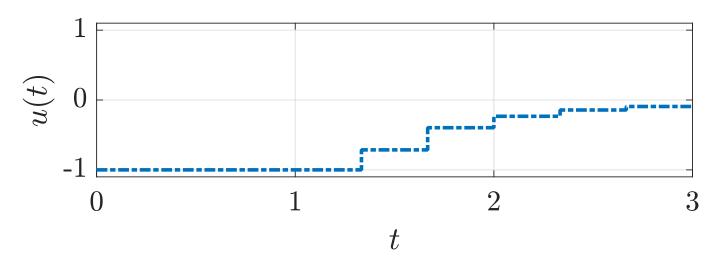
Illustrative example: Seventh Iterate



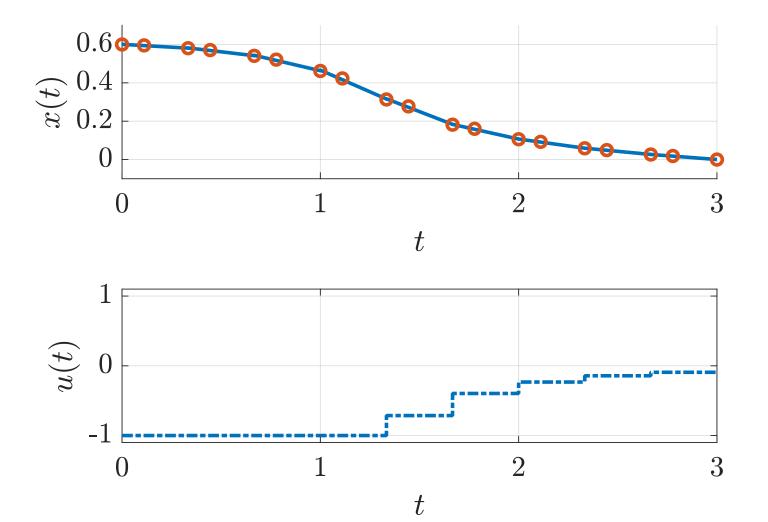


Illustrative example: Eighth Iterate

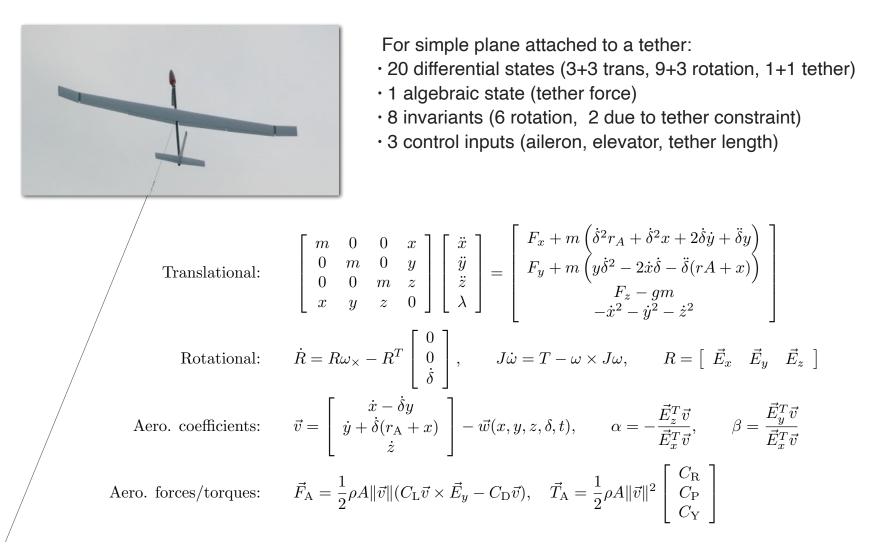




Illustrative example: Solution after Nine Newton-type Iterations



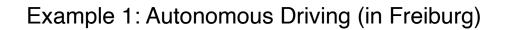
More Complex Example: Power Optimal Trajectories in Airborne Wind Energy (AWE) formulated and solved daily by practitioners using open-source python package "AWEBox" [De Schutter et al. 2023]



Newton-Type Optimization Iterations for Power Optimal Flight (video by Greg Horn, using CasADi and Ipopt as optimization engine)



Nonlinear Optimal Control often used for Model Predictive Control (MPC) One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]



Example 2: Quadrotor Racing (U Zurich, Scaramuzza)

IFFE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, IULY 2022

The proposed algorithm is able to adapt on-the-fly when e

nknown disturbances. In the figure we show a quadrotor platform flying a seeds of more than 60 km/h. Thanks to our online replanning method, the

ne can adapt to wind disturbances of up to 68 km/h while flying as fast as

Paper: https://ieeexplore.ieee.org/abstract/document/9805699

Video: https://www.youtube.com/watch?v=zBVpx3bgI6E

Time-Optimal Online Replanning for Agile Quadrotor Flight Angel Romero[®], Robert Penicka[®], and Davide Scaramuzza[®]

Abtract—In this letter, we lackle the problem of flying a quadrotor using time-optimal control policies that can be replained online when the environment changes or when encountering unknown distories that consider the full quadrotor dynamics are computationally expensive to generate, on the order of minutes or even hours. We introduce a sampling-based method for efficient generation of time-optimal paths of a point-mass model. These paths are then tracked using a Model Predictive Contouring Control approach that considers the full quadrotor dynamics and the single rotor being the first (and the full quadrotor dynamics and the single rotor being the first (and the full quadrotor dynamics and the single rotor being the first (an expirant) method that is able to adapt to changes order-dp. We showcas our approach's daspion compliabilities by flying a quadrotor at more than 60 km/h in a racing track where geta exa moving, Additionally, we show that our online replanning approach can cope with strong disturbances caused by winds of up to 68 km/h.

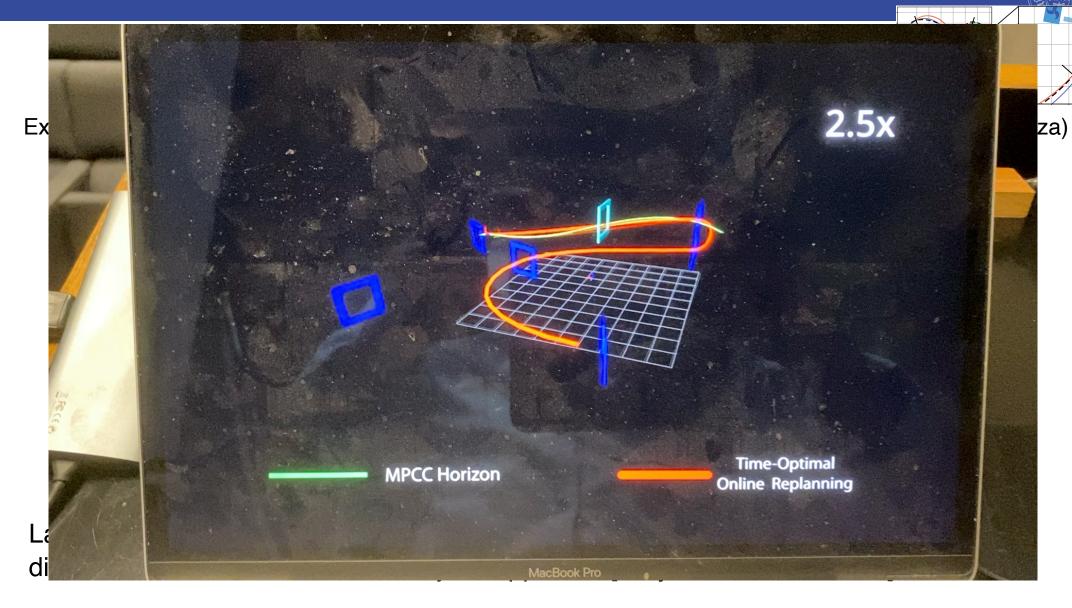
Index Terms—Aerial systems: Applications, integrated planni and control, motion and path planning.

SUPPLEMENTARY MATERIAL Video of the experiments: https://youtu.be/zBVpx3bgI6E

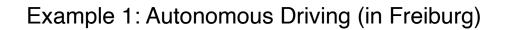
In order to deploy our MPCC controller, (4) needs to be solved in real-time. To this end, we have implemented our optimization problem using acados [24] as a code generation tool, in contrast to [6], where its previous version, ACADO [25] was used. It is important to note that for consistency, the optimization problem that is solved online is written in (4) and is exactly the same as in [6]. The main benefit of using acados is that it provides an interface to HPIPM (High Performance Interior Point Method) solver [26]. HPIPM solves optimization problems using BLAS-FEO [27], a linear algebra library specifically designed for

Latest **acados** development: differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]

Nonlinear Optimal Control often used for Model Predictive Control (MPC) One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]



Nonlinear Optimal Control often used for Model Predictive Control (MPC) One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]



Example 2: Quadrotor Racing (U Zurich, Scaramuzza)

IFFE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 3, IULY 2022

The proposed algorithm is able to adapt on-the-fly when e

nknown disturbances. In the figure we show a quadrotor platform flying a seeds of more than 60 km/h. Thanks to our online replanning method, the

ne can adapt to wind disturbances of up to 68 km/h while flying as fast as

Paper: https://ieeexplore.ieee.org/abstract/document/9805699

Video: https://www.youtube.com/watch?v=zBVpx3bgI6E

Time-Optimal Online Replanning for Agile Quadrotor Flight Angel Romero[®], Robert Penicka[®], and Davide Scaramuzza[®]

Abtract—In this letter, we lackle the problem of flying a quadrotor using time-optimal control policies that can be replained online when the environment changes or when encountering unknown distories that consider the full quadrotor dynamics are computationally expensive to generate, on the order of minutes or even hours. We introduce a sampling-based method for efficient generation of time-optimal paths of a point-mass model. These paths are then tracked using a Model Predictive Contouring Control approach that considers the full quadrotor dynamics and the single rotor being the first (and the full quadrotor dynamics and the single rotor being the first (and the full quadrotor dynamics and the single rotor being the first (an expirant) method that is able to adapt to changes order-dp. We showcas our approach's daspion compliabilities by flying a quadrotor at more than 60 km/h in a racing track where geta exa moving, Additionally, we show that our online replanning approach can cope with strong disturbances caused by winds of up to 68 km/h.

Index Terms—Aerial systems: Applications, integrated planni and control, motion and path planning.

SUPPLEMENTARY MATERIAL Video of the experiments: https://youtu.be/zBVpx3bgI6E

In order to deploy our MPCC controller, (4) needs to be solved in real-time. To this end, we have implemented our optimization problem using acados [24] as a code generation tool, in contrast to [6], where its previous version, ACADO [25] was used. It is important to note that for consistency, the optimization problem that is solved online is written in (4) and is exactly the same as in [6]. The main benefit of using acados is that it provides an interface to HPIPM (High Performance Interior Point Method) solver [26]. HPIPM solves optimization problems using BLAS-FEO [27], a linear algebra library specifically designed for

Latest **acados** development: differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]

Next Challenge: Nonsmooth Optimal Control

Next Challenge: Nonsmooth Optimal Control

Continuous-Time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

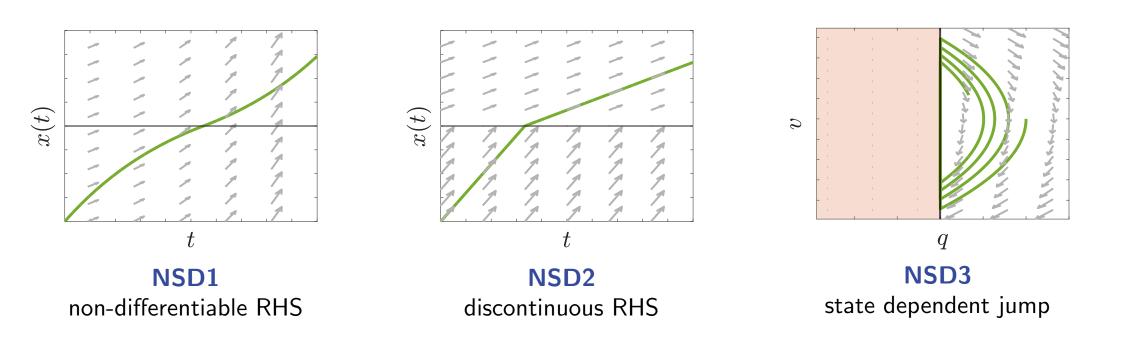
s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Three levels of difficulty:

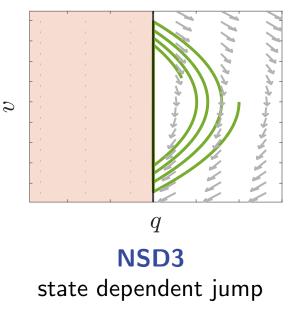
- (a) Linear ODE: f(x, u) = Ax + Bu
- (b) Nonlinear smooth ODE: $f \in \mathcal{C}^1$
- (c) Nonsmooth Dynamics (NSD):
 - f not differentiable (NSD1),
 - f not continuous (NSD2), or even
 - f not finite valued, discontinuous state
 x(t) (NSD3)

Classification of Nonsmooth Dynamics (NSD)

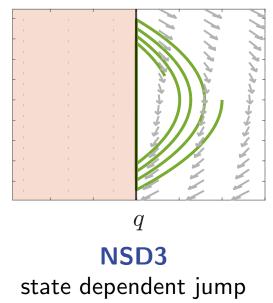
Ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).



Classification of Nonsmooth Dynamics (NSD)

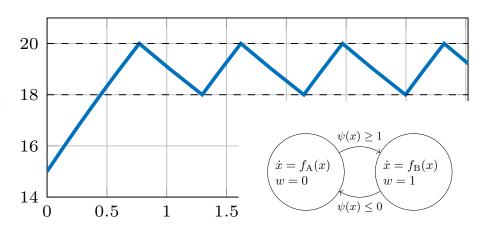


Classification of Nonsmooth Dynamics (NSD)

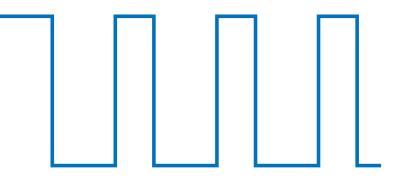


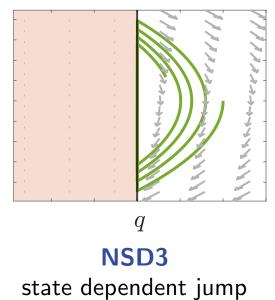
Bouncing Ball (NSD3)

Classification of Nonsmooth Dynamics (NSD)



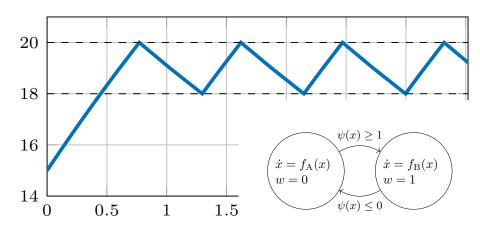
State Machine in Hysteresis Control (NSD3)





Bouncing Ball (NSD3)

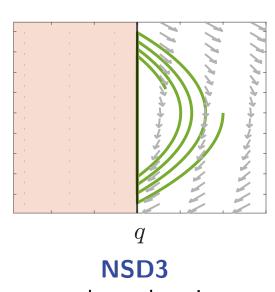
Classification of Nonsmooth Dynamics (NSD)



State Machine in Hysteresis Control (NSD3)

Walking Robot (unitree at LAAS, NSD3)

Bouncing Ball (NSD3)



state dependent jump

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Can Newton-Type Optimization be Useful for NSD3 Systems ?

Surprisingly, Yes !

Some recent progress in Nonsmooth Optimal Control:

Some recent progress in Nonsmooth Optimal Control:

Can transform many NSD3 systems into (easier) NSD2 via time-freezing

Some recent progress in Nonsmooth Optimal Control:

- · Can transform many NSD3 systems into (easier) NSD2 via time-freezing
- Can discretize NSD2 systems with highly accurate Finite Elements with Switch Detection (FESD), removing spurious local minimisers

Some recent progress in Nonsmooth Optimal Control:

- · Can transform many NSD3 systems into (easier) NSD2 via time-freezing
- Can discretize NSD2 systems with highly accurate Finite Elements with Switch Detection (FESD), removing spurious local minimisers
- Can solve the resulting Mathematical Programs with Complementarity Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)

Some recent progress in Nonsmooth Optimal Control:

- · Can transform many NSD3 systems into (easier) NSD2 via time-freezing
- Can discretize NSD2 systems with highly accurate Finite Elements with Switch Detection (FESD), removing spurious local minimisers
- Can solve the resulting Mathematical Programs with Complementarity Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)
- · Can use open-source software **NOSNOC**, from MATLAB and Python

github.com/nosnoc/nosnoc

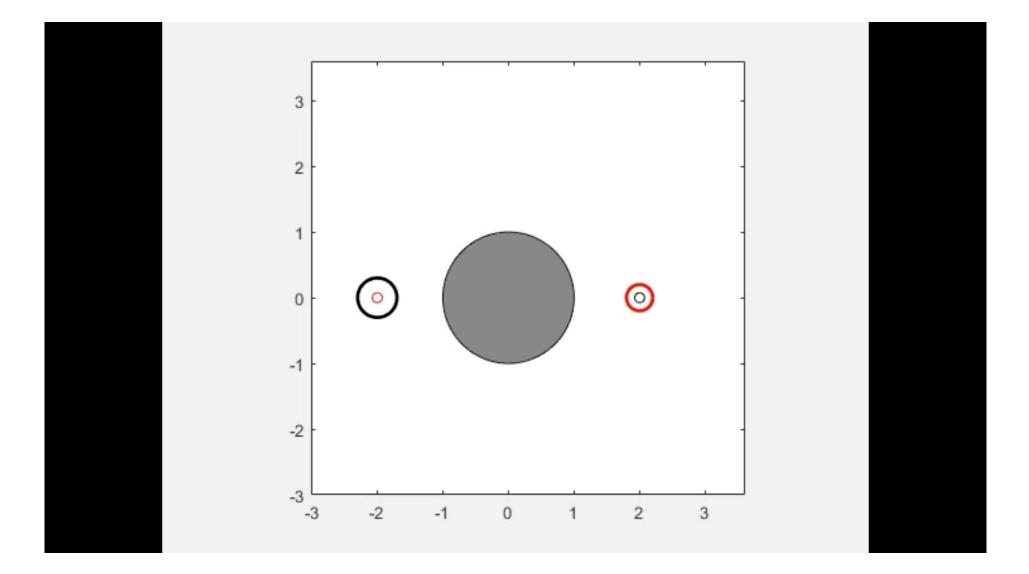
Some recent progress in Nonsmooth Optimal Control:

- Can transform many NSD3 systems into (easier) NSD2 via time-freezing
- Can discretize NSD2 systems with highly accurate Finite Elements with Switch Detection (FESD), removing spurious local minimisers
- Can solve the resulting Mathematical Programs with Complementarity Constraints (MPCC) via homotopy of NLP (e.g. based on IPOPT)
- · Can use open-source software NOSNOC, from MATLAB and Python

github.com/nosnoc/nosnoc

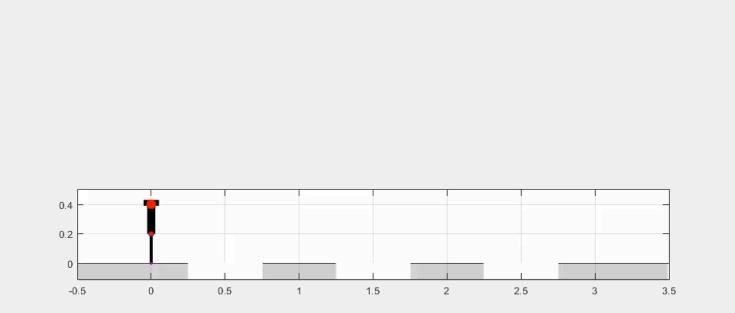
PhD and Postdoc Work by **Armin Nurkanovic** (currently serving as replacement professor of mathematical optimization at Technical University of Braunschweig)

NOSNOC examples

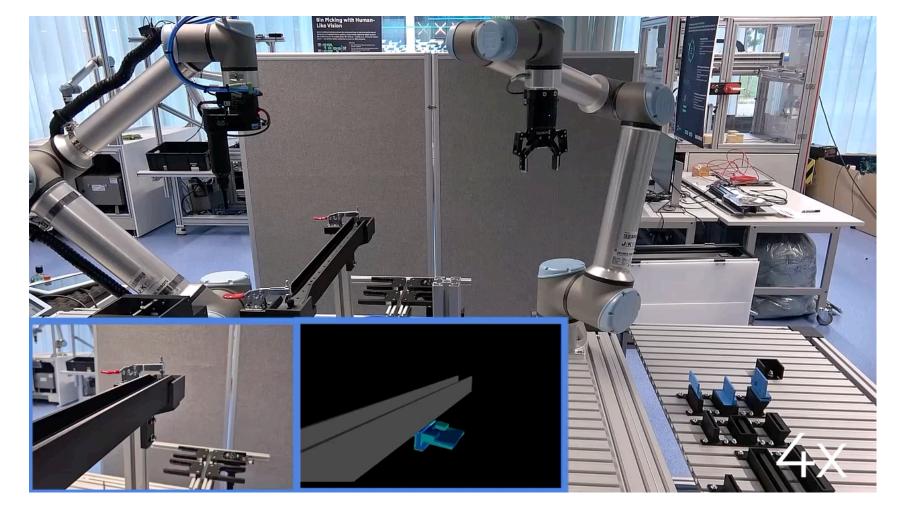


Hopping robot - move with minimal effort from start to end position

Homotopy initialized with start position everywhere. Optimizer finds creative solution.

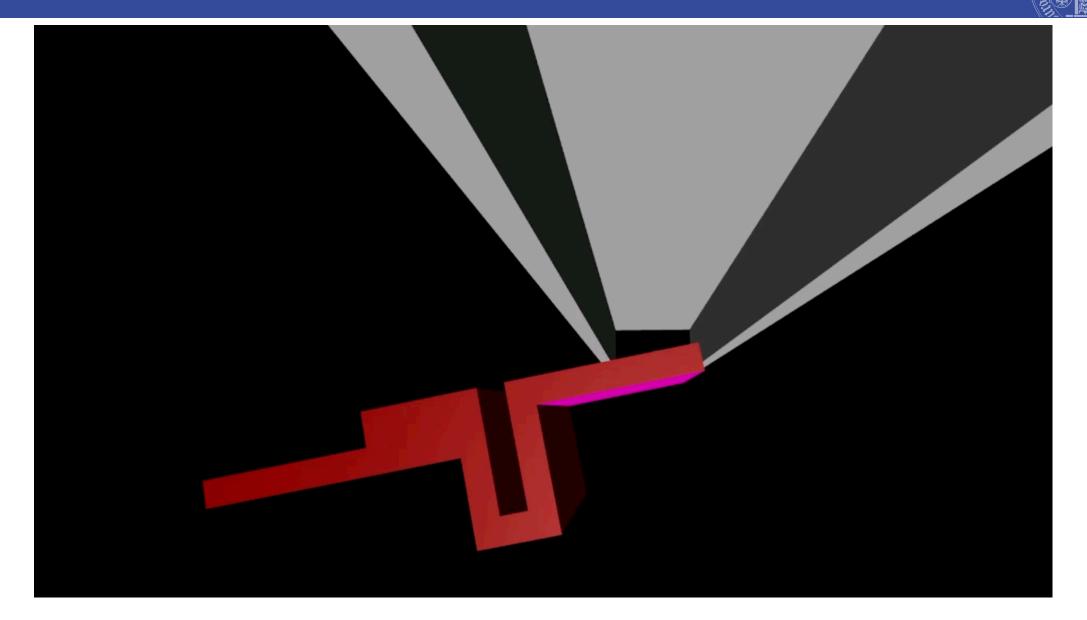


Today's Focus: Assembly Robots at Siemens Research in Munich (NSD3)



Christian Dietz (MSc Mathematics) industrial PhD student at University of Freiburg, supervised by Armin Nurkanovic and MD

Dream: just specify start and end position...but linear interpolation does not work (simulation)



Dream: just specify start and end position...but linear interpolation does not work (experiment)

- 1. Divide colliding bodies each into rigidly connected convex polyhedra
- 2. Define Signed Distance Function (SDF) between polyhedra
- 3. Compute Contact Normal of SDF (unique if slightly smoothed)
- 4. Formulate Complementarity Lagrangian System Model (NSD3)
- 5. Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
- 6. Solve resulting Mathematical Program with Complementarity Constraints (MPCC) via Scholtes' Relaxation Method
- 7. Play open-loop control trajectory on real robot

- 1. Divide colliding bodies each into rigidly connected convex polyhedra
- 2. Define Signed Distance Function (SDF) between polyhedra
- 3. Compute Contact Normal of SDF (unique if slightly smoothed)
- 4. Formulate Complementarity Lagrangian System Model (NSD3)
- 5. Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
- 6. Solve resulting Mathematical Program with Complementarity Constraints (MPCC) via Scholtes' Relaxation Method
- 7. Play open-loop control trajectory on real robot

Optimization-based signed distance function (SDF) for polytopes

Halfspace representation of polytopes for $n_{\rm w} \in \{2,3\}$:

$$\mathcal{P}_1 = \{ p \in \mathbb{R}^{n_{w}} \mid G_1 p \le h_1 \}, \ \mathcal{P}_2 = \{ p \in \mathbb{R}^{n_{w}} \mid G_2 p \le h_2 \}.$$

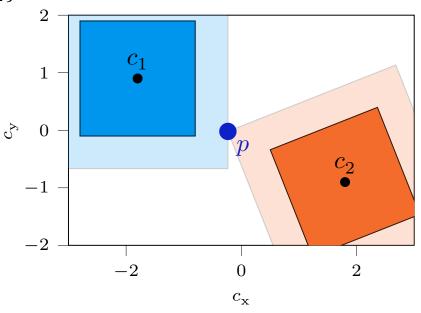
Associating degrees of freedom:

- $\blacktriangleright \ \rho_i$ center of mass of i-th polytope
- ξ_i orientation of *i*-th polytope
- System configuration: $q = (\rho_1, \xi_2, \rho_2, \xi_2)$
- ► $R(\xi_i)$ rotation matrices

Calculating the SDF as growth distance:

$$\Phi_{0}(q) = \min_{p,\alpha} \quad \alpha$$

s.t. $G_{1}R(\xi_{1})^{\top}(p-\rho_{1}) \leq (1+\alpha)h_{1},$
 $G_{2}R(\xi_{2})^{\top}(p-\rho_{2}) \leq (1+\alpha)h_{2}.$



Smoothing the signed distance function

The optimization-based SDF is given by a parametric linear program

$$\Phi_0(q) = \min_{z} \quad c^{\top} z$$

s.t. $A(q)z \le b(q),$

with primal variables $z = (p, \alpha)$.

Perturbed KKT conditions as considered in interior-point methods with barrier parameter $\tau > 0$ are given by

$$0 = c + A(q)^{\top} \lambda,$$

$$y = b(q) - A(q)z,$$

$$\lambda_i y_i = \tau, \quad i = 1, \dots, m,$$

$$\lambda > \mathbf{0}, y > \mathbf{0},$$

 λ are Lagrange multipliers and y are inequality constraint slacks.

Smoothing the signed distance function (1)

By writing the equality conditions compactly the perturbed KKT conditions are denoted by

$$F_{\tau}(\gamma; q) = \mathbf{0},$$

$$\lambda > \mathbf{0}, y > \mathbf{0},$$

with primal, dual and slack variables $\gamma = (z, \lambda, y)$.

Proposition

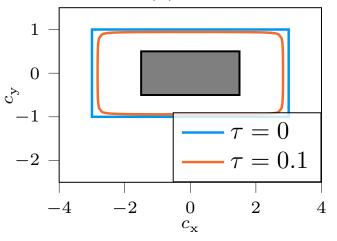
The solution $\gamma_{\tau} = (z_{\tau}, \lambda_{\tau}, y_{\tau})$ of the perturbed optimality conditions exists and is unique.¹

This implies that the distance function defined by

$$\Phi_{\tau}(q) = \{ \alpha \mid F_{\tau}(\gamma_{\tau}; q) = \mathbf{0}, \lambda_{\tau} > \mathbf{0}, y_{\tau} > \mathbf{0} \},\$$

is well-defined for $\tau > 0$.

Level lines $\Phi_{\tau}(q) = 1$, q point mass



¹ C. Dietz, S. Albrecht, A. Nurkanović, M. Diehl. Smoothed Distance Functions for Direct Optimal Control of Contact-Rich Systems. European Control Conference (ECC) 2025.

Contact normal approximation for the smooth SDF

Recap on definitions

The SDF is given by

$$\Phi_0(q) = \min_{z} \quad c^{\top} z$$
s.t. $A(q)z \le b(q),$
(1)

with inequality constraint slacks

$$y(z,q) = b(q) - A(q)z$$

We additionally define

- \$\bar{Z}(q)\$ denotes the set of all primal optimal solutions to (1)
- $\bar{\Lambda}(q)$ denotes the set of all corresponding dual optimal solutions

- Modelling of contact-rich systems requires definition of a contact normal vector
- Normally the contact normal is chosen as the gradient of the SDF (results in third-order sensitivities in Newton-type optimization!)

Directional derivatives at an exact solution:²

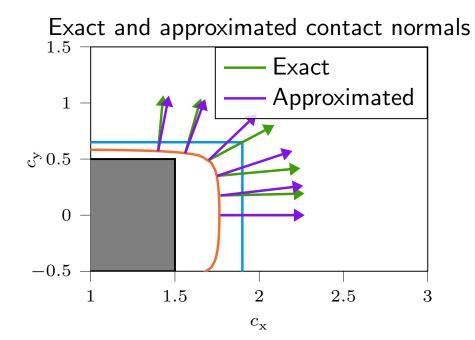
$$\partial_d \Phi_0(q) = \min_{z \in \bar{Z}(q)} \max_{\lambda \in \bar{\Lambda}(q)} - d^\top \nabla_q y(z, q) \lambda,$$

Proposed contact normal approximation:

$$n_{\tau}(q) = \frac{-\nabla_q y(z_{\tau}, q)\lambda_{\tau}}{\|\nabla_q y(z_{\tau}, q)\lambda_{\tau}\|_2}.$$

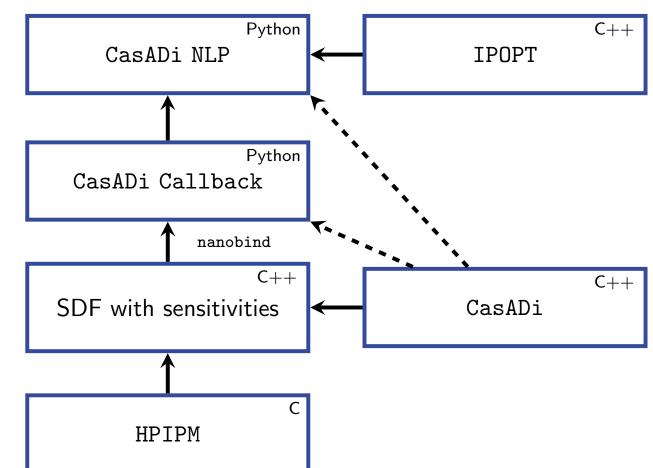
 $^{^{2}}$ W. Hogan. Directional derivatives for extremal-value functions with applications to the comple

Contact normal approximation for the smooth SDF



SDF implementation

- Numerical experiments use the CasADi toolbox through its Python interface and IPOPT as solver
- The SDF is specified through CasADi's Callback class
- HPIPM is used to solve the distance problems up to barrier parameter $\tau > 0$
- A C++ wrapper is used to efficiently manage HPIPM structures and parallel computing
- C++ code is interfaced back to Python by using the nanobind library



 Divide colliding bodies each into rigidly connected convex polyhedra
 Define Signed Distance Function (SDF) between polyhedra
 Compute Contact Normal of SDF (unique if slightly smoothed)
 Formulate Complementarity Lagrangian System Model (NSD3)
 Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
 Solve resulting Mathematical Program with Complementarity Constraints (MPCC) via Scholtes' Relaxation Method
 Play open-loop control trajectory on real robot

Robust contact-implicit trajectory optimization

Continuous-time contact-rich dynamical system:

$$\begin{split} \dot{q} &= \nu, \\ M\dot{\nu} &= u + \sum_{i=1}^{n_{\rm d}} n_{\tau,i}(q)\lambda_{{\rm n},i}, \\ 0 &\leq \Phi_{\tau,i}(q) \perp \lambda_{{\rm n},i} \geq 0, \quad i = 1, \dots, n_{\rm d}, \\ \text{Multi impact law.} \end{split}$$

- $\blacktriangleright \ \nu \in \mathbb{R}^{n_{\mathrm{q}}}$ system velocity
- $\blacktriangleright \ M \in \mathbb{R}^{n_{\rm q} \times n_{\rm q}} \text{ inertia matrix}$
- $\blacktriangleright \ u \in \mathbb{R}^{n_{\mathrm{u}}}$ control input
- ▶ $n_{d} \in \mathbb{N}$ object pairs with smooth SDF $\Phi_{\tau,i}$ and corresponding contact normals $n_{\tau,i}$

Implicit-Euler time-stepping discretization

Time-stepping discretization:

$$q_{k+1} = q_k + h\nu_{k+1},$$

$$\nu_{k+1} = \nu_k + hM^{-1}(u_k + \sum_{i=1}^{n_d} n_{\tau,i}(q_{k+1})\lambda_{n,k,i}),$$

$$\Phi_{\tau,i}(q_{k+1})\lambda_{n,k,i} \le \sigma, \ i = 1, \dots, n_d,$$

$$0 \le \Phi_{\tau,i}(q_{k+1}), \ 0 \le \lambda_{n,k,i}, \ i = 1, \dots, n_d,$$

with time-step h>0 and using Scholtes' relaxation to relax complementarity constraints with $\sigma>0.$

Compact notation for the discretized system:

$$H_{\sigma,\tau}(x_k, x_{k+1}, \lambda_{n,k}, u_k) = \mathbf{0},$$

$$G_{\sigma,\tau}(x_k, x_{k+1}, \lambda_{n,k}, u_k) \leq \mathbf{0}.$$

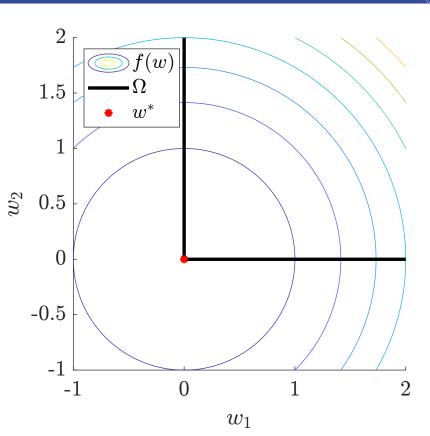
 Divide colliding bodies each into rigidly connected convex polyhedra
 Define Signed Distance Function (SDF) between polyhedra
 Compute Contact Normal of SDF (unique if slightly smoothed)
 Formulate Complementarity Lagrangian System Model (NSD3)
 Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
 Solve resulting Mathematical Program with Complementarity Constraints (MPCC) via Scholtes' Relaxation Method
 Play open-loop control trajectory on real robot

Numerical methods for MPCCs

MPEC			
	$\min_{w\in\mathbb{R}^n}$	f(w)	(3a)
	s.t.	g(w) = 0,	(3b)
		$h(w) \ge 0,$	(3c)
		$0 \le w_1 \perp w_2 \ge 0,$	(3d)
$w = (w_0,$	$w_1, w_2)$	$\in \mathbb{R}^n, \ w_0 \in \mathbb{R}^p, \ w_1, w_2$	$w_2 \in \mathbb{R}^m,$

 $\Omega = \{ x \in \mathbb{R}^n \mid g(w) = 0, h(w) \ge 0, \ 0 \le w_1 \perp w_2 \ge 0 \},\$

- Standard NLP methods solve the KKT conditions.
- ► MPECs violate constraint qualifications, and the KKT conditions may not be necessary.
- There are many stationary concepts for MPECs, and not all are useful.



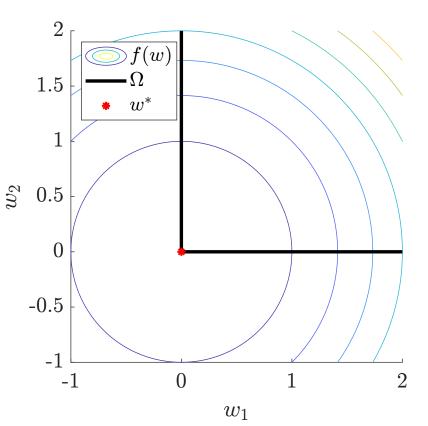
Numerical methods for MPCCs

MPEC			
	$\min_{w\in\mathbb{R}^n}$	f(w)	(3a)
		g(w) = 0,	(3b)
		$h(w) \ge 0,$	(3c)
		$0 \le w_1 \perp w_2 \ge 0,$	(3d)
()	$ = \mathbb{D}^n $ $ = \mathbb{D}^p $	$m = m^{m}$

 $w = (w_0, w_1, w_2) \in \mathbb{R}^n, \ w_0 \in \mathbb{R}^p, \ w_1, w_2 \in \mathbb{R}^m,$

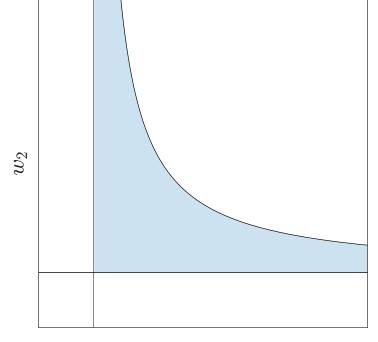
 $\Omega = \{ x \in \mathbb{R}^n \mid g(w) = 0, h(w) \ge 0, \ 0 \le w_1 \perp w_2 \ge 0 \},\$

- Standard NLP methods solve the KKT conditions.
- MPECs violate constraint qualifications, and the KKT conditions may not be necessary.
- There are many stationary concepts for MPECs, and not all are useful.
- **Workaround/main idea**: solve a (finite) sequence of more regular problems.



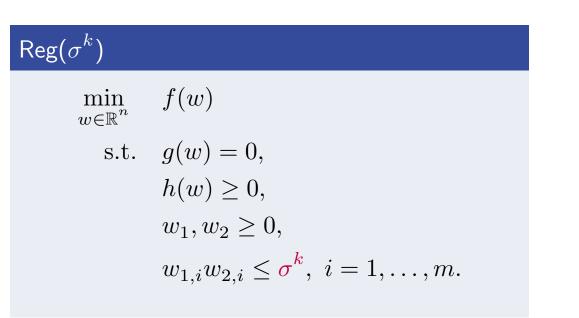
The easiest to implement and the most efficient regularization method [Scholtes, 2001].

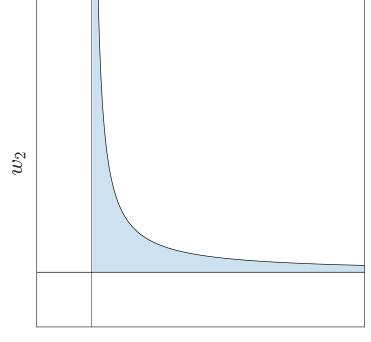
$$\begin{aligned} & \underset{w \in \mathbb{R}^{n}}{\min} \quad f(w) \\ & \text{s.t.} \quad g(w) = 0, \\ & h(w) \ge 0, \\ & w_{1}, w_{2} \ge 0, \\ & w_{1,i} w_{2,i} \le \sigma^{k}, \ i = 1, \dots, m. \end{aligned}$$



 w_1

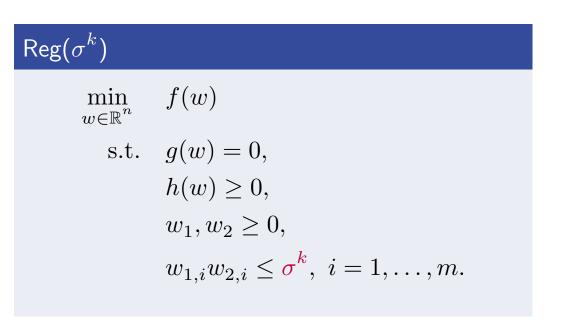
The easiest to implement and the most efficient regularization method [Scholtes, 2001].

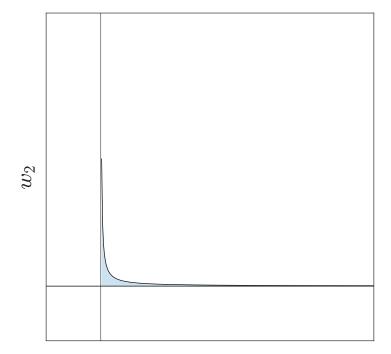




 w_1

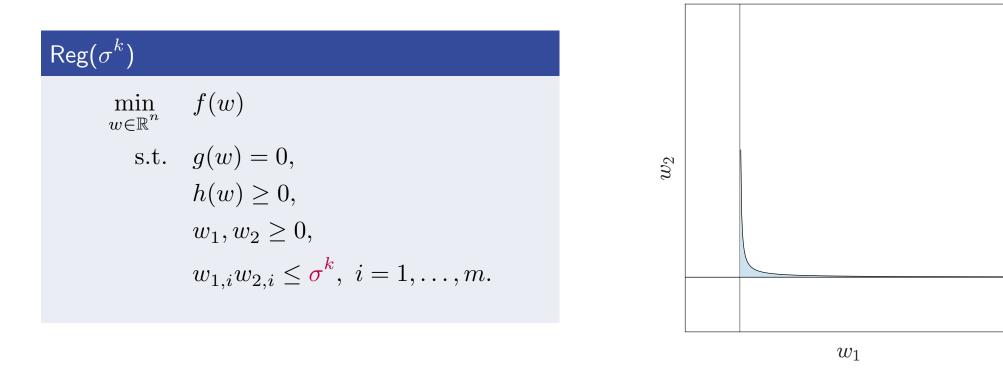
The easiest to implement and the most efficient regularization method [Scholtes, 2001].





 w_1

The easiest to implement and the most efficient regularization method [Scholtes, 2001].

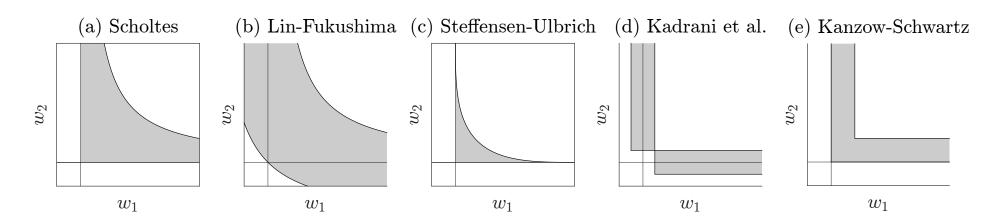


Theorem ([Scholtes, 2001, Hoheisel et al., 2013])

Let $\{\sigma^k\} \downarrow 0$ and let w^k be a stationary point of $\text{Reg}(\sigma^k)$ with $w^k \to w^*$ such that MPEC-MFCQ holds at w^* . Then w^* is a C-stationary point of the the MPEC (3).

Other regularization methods

There exist many elaborate ways to relax the L-shaped set. Convergence theory in [Hoheisel et al., 2013]

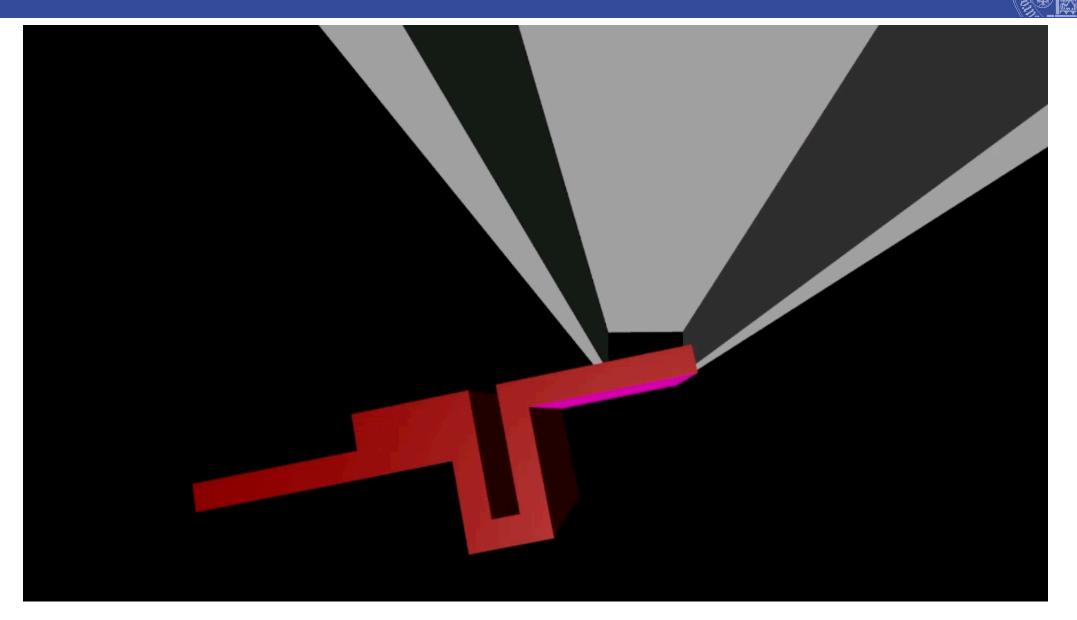


- They have better convergence properties than Scholtes' method if the NLP's are solved exactly.
- ► In practice, they perform better only on easier problems [Nurkanović et al., 2024].

 Divide colliding bodies each into rigidly connected convex polyhedra
 Define Signed Distance Function (SDF) between polyhedra
 Compute Contact Normal of SDF (unique if slightly smoothed)
 Formulate Complementarity Lagrangian System Model (NSD3)
 Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
 Solve resulting Mathematical Program with Complementarity Constraints (MPCC) via Scholtes Relaxation Method

7.Play open-loop control trajectory on real robot

Solution of Optimal Control Problem (L2-Control Penalty) (simulation)



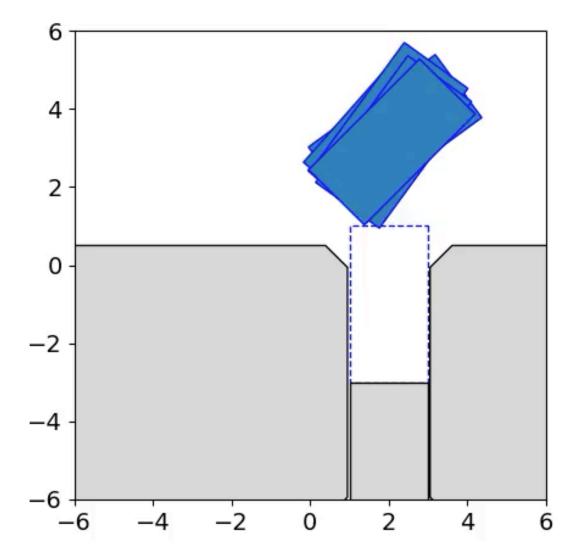
Solution of Optimal Control Problem (L2-Control Penalty) (experiment)

Solution of Optimal Control Problem (L2-Control Penalty) (experiment)

 Divide colliding bodies each into rigidly connected convex polyhedra
 Define Signed Distance Function (SDF) between polyhedra
 Compute Contact Normal of SDF (unique if slightly smoothed)
 Formulate Complementarity Lagrangian System Model (NSD3)
 Discretize OCP with Time-Stepping Method (Implicit Euler, Fixed Steps)
 Solve resulting Mathematical Program with Complementarity Constraints (MPCC) via Scholtes Relaxation Method
 Play open-loop control trajectory on real robot
 Robustify by optimizing an ensemble of perturbed trajectories
 Include Real Robot's Internal Impedance Control Law into Model

10. Play robust open-loop control trajectory on real robot

Simulation of robust trajectory for peg in hole

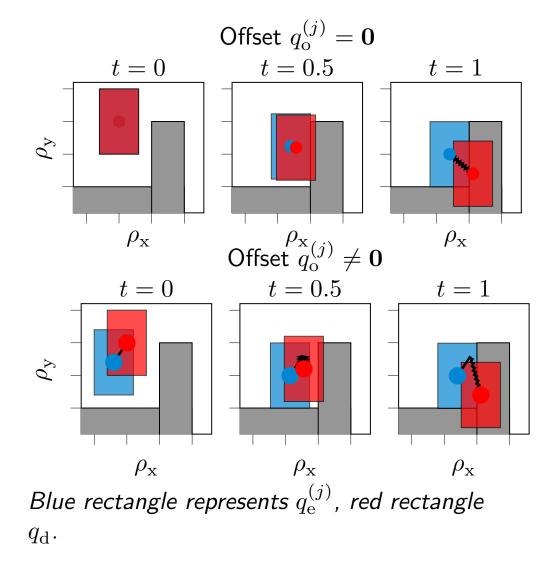


Impedance law for reliable motion execution on real systems

- To achieve closed-loop execution on a real system, we utilize an impedance law as control strategy
- The goal of the planning algorithm is to determine a desired trajectory which results in robust assembly motions if it is tracked by the impedance controller
- ► For a given desired trajectory x_d = (q_d, ν_d), a trajectory x_e^(j) = (q_e^(j), ν_e^(j)) in the ensemble is controlled by the impedance force

$$u_j = D(\nu_{\mathrm{d}} - \nu_{\mathrm{e}}^{(j)}) + K((q_{\mathrm{d}} \oplus q_{\mathrm{o}}^{(j)}) \ominus q_{\mathrm{e}}^{(j)}),$$

with gain matrices D, K and a fixed offset $q_{\rm o}^{(j)}$.



Discretization and cost function for robust motion generation

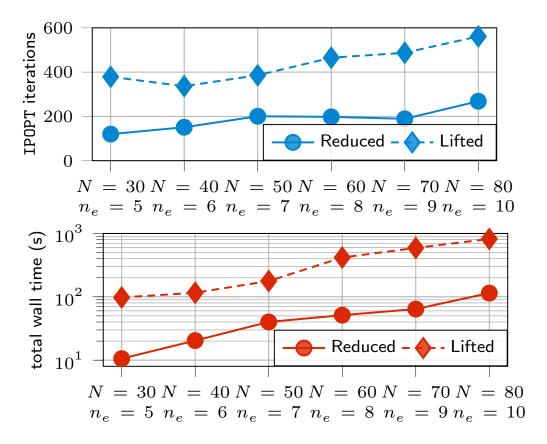
Contact-rich system with quaternion dynamics:

$$\begin{split} \dot{q}_{\rm d} &= Q(q_{\rm d})\nu_{\rm d}, \\ \text{For } j &= 1, \dots, n_{\rm s}: \\ \dot{q}_{\rm e}^{(j)} &= Q(q_{\rm e}^{(j)})\nu_{\rm e}^{(j)}, \\ M\dot{\nu}_{\rm e}^{(j)} &= u_j + \sum_{i=1}^{n_{\rm d}} Q(q_{\rm e}^{(j)})^{\top} n_{\tau,i}(q_{\rm e}^{(j)})\lambda_{{\rm n},i}^{(j)}, \\ \lambda_{{\rm n},i}^{(j)} \Phi_{\tau,i}(q_{\rm e}^{(j)}) &\leq \sigma, \ i = 1, \dots, n_{\rm d} \\ 0 &\leq \lambda_{{\rm n},i}^{(j)}, \ 0 &\leq \Phi_{\tau,i}(q_{\rm e}^{(j)}), \ i = 1, \dots, n_{\rm d}, \\ u_j &= D(\nu_{\rm d} - \nu_{\rm e}^{(j)}) + K((q_{\rm d} \oplus q_{\rm o}^{(j)}) \ominus q_{\rm e}^{(j)}), \end{split}$$

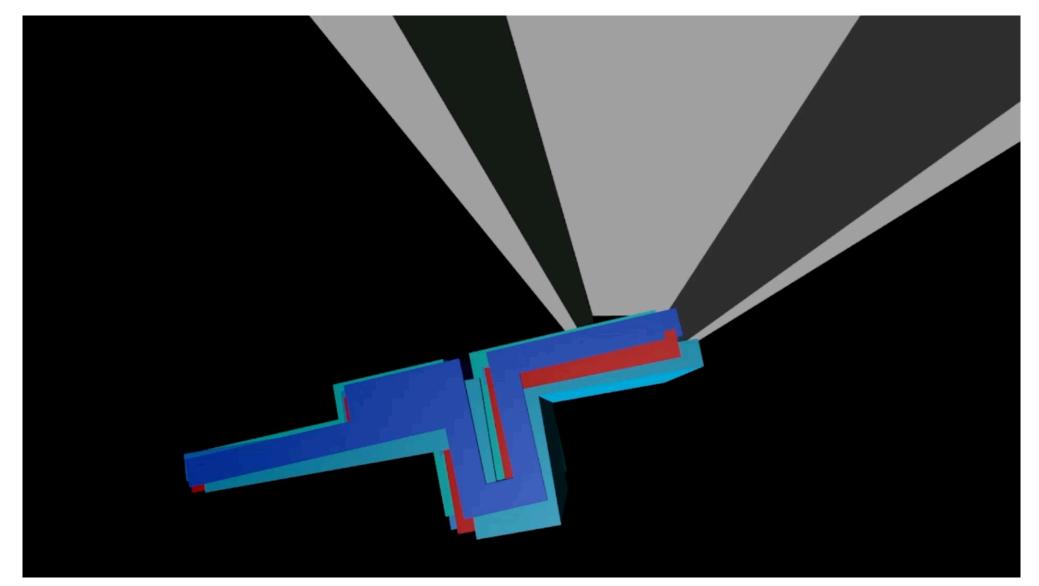
- Discretization through $N_{\rm cnt}$ intervals with $N_{\rm sim}$ simulation intervals per control interval
- ▶ Total simulation steps $N_{\text{tot}} = N_{\text{cnt}}N_{\text{sim}}$
- On each simulation interval an implicit Euler time-stepping discretization is utilized
- On each control interval a constant $\nu_{\mathrm{d},k}, \ k = 1, \dots, N_{\mathrm{cnt}}$ is used
- Cost function for terminal state $\bar{x} = (\bar{q}, \bar{\nu}):$ $\cot = \sum_{k=1}^{N_{\text{cnt}}} 0.001 \|\nu_{d,k,\text{trs}}\|_2^2 + 0.01 \|\nu_{d,k,\text{ang}}\|_2^2$ $+ 1 \|\bar{\rho} - \rho_{d,N_{\text{tot}}}\|_2^2 + 10(1 - (\bar{\xi}^{\top}\xi_{d,N_{\text{tot}}})^2)$ $+ \sum_{j=1}^{n_{\text{e}}} 100 \|\bar{\rho} - \rho_{e,N_{\text{tot}}}^{(j)}\|_2^2 + 1000(1 - (\bar{\xi}^{\top}\xi_{e,N_{\text{tot}}}^{(j)})^2)$

Computational performance comparison of reduced and lifted SDF implementations

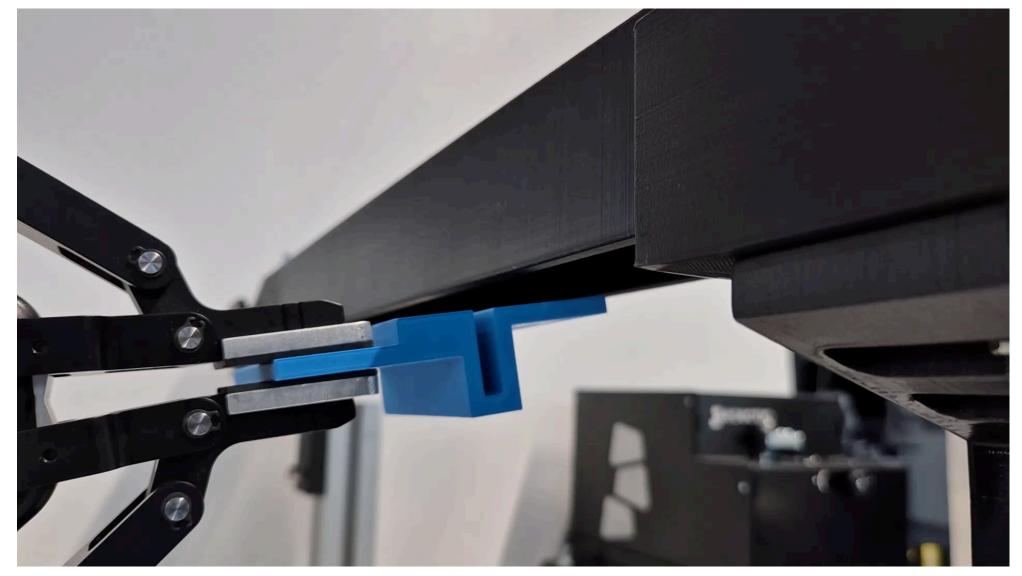
- The SDF Φ_{τ,i} can be either evaluated as proposed by using HPIPM or by adding the perturbed KKT conditions directly in the optimal control problem (reduced or lifted implementation)
- We compare computational performance on a two-dimensional peg-in-hole problem for different trajectory lengths N and number of simultaneously simulated trajectories n_e
- Using the reduced modelling with external SDF evaluation results in less IPOPT iterations and less total wall time for all considered problem sizes



Robust Optimal Control Solution (simulation)



Robust Optimal Control Solution (5 scenarios) (experiment)



Conclusions

- Newton-type optimization can address seemingly combinatorial optimization problems in nonsmooth optimal control
- Mathematical Programs with Complementarity Constraints (MPCC) are a powerful tool for "disciplined nonsmooth programming"
- Derivatives remain a crucial optimization ingredient also when the nonconvexity of problems increases

The great watershed in optimization isn't between convexity and nonconvexity, but between computer functions that do - or do not - provide derivatives.